2D mapping of ice species in molecular cores^{*}

Jennifer A. Noble¹, H. J. Fraser¹, K. M. Pontoppidan², Y. Aikawa³ and I. Sakon⁴

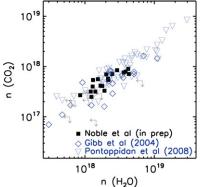
¹Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, Scotland email: jennifer.noble@strath.ac.uk

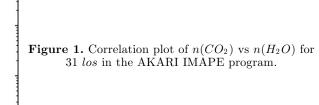
²California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125, U.S.A.

³Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501, Japan

⁴Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-0003, Japan


Abstract. We present data from our ice mapping program IMAPE on the AKARI satellite. Initial results show a correlation between the abundance of $CO_{2(s)}$ and $H_2O_{(s)}$, consistent with previous studies. We can trace abundances of molecules across a core using a single observation.


Keywords. astrochemistry, ISM: clouds, ISM: molecules, techniques: spectroscopic

1. Introduction

In dense cores, much of the molecular material is frozen on the surface of dust grains. AKARI allows the simultaneous observation of multiple lines of site (*los*) through a core. We observed a 1'x1' region towards 20 cores, between 2.5–5.0 μ m. Data was reduced using our own pipeline (Noble *et al.* in prep.), producing spectra for 31 *los*.

2. Results and Conclusions

The abundance of H_2O and CO_2 was calculated for each los using laboratory data, and is presented in Figure 1. Abundances agree with previous studies (as shown in Figure 1) and a clear correlation is seen between $n(H_2O)$ and $n(CO_2)$ in the cores observed.

References

Gibb, E. L. et al. 2004, ApJS, 151, 35
Pontoppidan, K. M. et al. 2008, ApJ, 678, 1005

*Based on observations with AKARI, a JAXA project with the participation of ESA.